ABISM

Adaptive Background Interactive Strehl Meter

Julien Girard, Leonardo Vanzi, Martin Tourehenerboauf

ABISM

ABISM

The Strehl is a mesure of the quality of an image used in Adaptive Optic.

It is comparable to the Encircled Energy Or the FWHM

Introduction

- We want to create a Strehl Meter
 - Easy to use (for visitors)
 - Independant
 - Fast
 - Robust (when it's 5am)

- Can be installed on Paranal computers (old python versions (no wx)

- Won't make everything bug (no crazy,

dangerous loop)

- Visual

- Opened (can tell me all what he knows and can be used by everyone)

Summary

<u>1/ Generalities</u>

2/ Presentation of the Abism

3/ Photometry

4/ Difficulties

How to mesure the Strehl (1901)

$$S = \frac{I(\mathbf{x}=0)}{P(\mathbf{x}=0)}$$

$$S = \frac{\int OTF_{\text{PSF}}(\mathbf{u})d\mathbf{u}}{\int OTF_{\text{diff}}(\mathbf{u})d\mathbf{u}}$$

 Maximum
 Photometry
 Maximum of the diffraction pattern 1/ Center
 2/ Fourier transform
 3/ Aperture
 4/ Integration

Generalities

- When the Strehl is too low, better to talk about encircled energy or FWHM. (Interferometry, spectroscopy)
- The Strehl is very dependant on the way to mesure it (Lewis 2004).
- Need to know
 - \rightarrow wavelenght
 - → diameter & obstruction
 - \rightarrow pixel scale

ESO current Strhel meter MSM (good but not user friendly)

000 X NAC	O Multi Strehl Meter - version 4.2			
Load PSF PSF Image Size: 1004cdt Show HDR PSF Image: 2,NB,2.17,1ter2,Focus,0001.Fits Load BKG BKG Image Size: 1024cdt Zero BKG		Background boxes		
Subtract Background SUBBACTED				
* Subtr. Image Load Color Table Display image: * PSF 0.30 * 3N5 Stretch Colore 3 2000 001	24.45 2			
Flux cut-off: 500 FBH1: 30 px	Figure 9: Illustration of three different background box sizes. From left to right: too large (a),			
Roardness: 11,00.1. 3harpress: 0.20,1.0	ideal (b), too sm	all (c).		
ub-Inages Size 0 pr Find Stars n, 1				
Save Data Danges Strehl_2J0_2,17_iter2_focu .fits	X: S0L FX Reject stars below: 200			
Wavelength: 2.155 um entroid box B px	Zoon J Sole: 0302.00 All Reject stars above: 32000			
Pixel size: 0.013 * knewsphine 3.000 K/Y	Munc -786,00 A00 F Reject neighbours	MAD Multi Strehl Meter		
elescope Dismeter 0,000 a bstruction 0,140		by E. Marchetti		
Background box: B px Threshold: 2 rms 100	Star n. Zoose	by E. Marchetti		
Imma, Energy Box: (0,100) * J MBD Calibrate J Include Orionation J Show COMPUTE STREEL Save Street Bata	D,10 UPDaTE Stretch Colors	Good for strehl maps		

An other Strehl meter goog but not user friendly either

\varTheta 🔿 🔿 🛛 🔊 🔊	trehl tool		
Pupil Filename : JUsers/dimitrimawet/Desktop/Pu	Brouse		
Pupil Pixel Scale : .04875 m/pix			
PSF Plato Scale : 13.27 mac/pix			
Wavelength : 2170 nn Calculate perfect PSF			
PSF Filename : Vsers/dimitrimawet/Desktop/Pu	Brouse	C.	2
Image Filename : NB_2.17_Iter2/subtr_ing_1.fit	Brouse		
Estimate background 🕹 OFF 🛧 ON			
Autofind? 🔷 DFF 💠 ON			
Photometry radius in arcsec : 1,000		_	
Strehl : 0.8808 FWHM : 58.43 mas		GOI	DISMISS

M. Van Dam

accurate but slow.. adapted to Keck's complex aperture

Our Strehl Meter

Summary

1/ Generalities

<u>2/ Presentation of the Abism</u>

3/ Photometry

4/ Difficulties

Presentation of ABISM

- Language : Python
- GUI package : Tkinter
- For : ESO : NaCo (can be used for every image.fits but won't read Header)
- Caracteristiques :
 - \rightarrow Can read data cube (by default take the last image)
 - \rightarrow Return an error and many easy way to compute the strehl

 \rightarrow Return also : Strehl equivalent 2.2 um , FWHM, photometry, star center, background, Encircled energy (not implemented yet)

Presentation of ABISM

- Can be opened by command line :
 - → python Abism.py [image.fits]
 - → Or by a script (Gasgano)

 A GUI allows the user to check and adjust parameters

The user choose one or many stars and get his strehl.

Summary

1/ Generalities

2/ Presentation of the Abism

<u>3/ Photometry</u>

4/ Difficulties

Photometry

- How to mesure an accurate photometry ?
 <u>PSF fit</u>
 <u>Aperture</u>
- What is the form ?
- Fall in a local optimum ?
- Give initial parameters

- Where to stop ?
- Bad Pixels ?
- Circular ?
- How to interplolate ?
- What is the error ?

Where to stop

Astigatism ? Binary ? Stepped Background ? How to find the star ?

Photometry

Photometry : Our Solution

1/ Pre-Parameters

- \rightarrow a) Center : User defined
- \rightarrow b) FWHM : We parcurate the pixels

<u>2/ Fit</u>

- \rightarrow a) Type : User defined (But we'll do Gaussian \rightarrow Moffat \rightarrow Bessel)
- \rightarrow b) Local Optimum, to avoid it , we show the fit

3/ Aperture photometry

- \rightarrow a) Rectangle stop at 99% encircled energy
- \rightarrow b) Bad pixels destroyed by median filter

<u>4/ Error</u>

- \rightarrow a) Difference between my photometry and the fit that has been done
- \rightarrow b) Can be infered by S/N

PSF fit

- What is the form ?
- Fall in a local optimum ?
- <u>Give</u> initial parameters

Aperture

- Where to stop ?
- Bad Pixels ?
- Circular ?
- How to interplolate ?
- What is the error ?

Astigatism ? Binary ? Stepped Background ? How to find the star ?

Photometry (background)

How to estimate background ?

Previous PSF fit

- New, clever Aperture
- Where ?
- Degenerated ?

Limits ?

• How ?

- We do a 8 rectangles phtotometry
 - :) And we take the median

:) In the futur we aim to give the slope of the background

Summary

1/ Generalities

2/ Presentation of the Abism

3/ Photometry

<u>4/ Difficulties</u>

Dificulties

0

Python command

🗢 🕪) 🖂 18:09 🕱 tourneboeuf (り

Dificulties

```
def Run(self,String):
      String = String.get("1.0",END)
    exec String in globals(), locals()
def RunPython(self):
 window run = Tk()
 window run.title('Python command')
 #window run.geometry("+0+0")
  frame=Frame(window run)
  frame.pack()
  text user = Text(frame)
  text user.insert(INSERT, 'print self.psf fit[0][0]')
  text user.pack()
  text user.focus force()
  button=Button(frame,text="Run", command=lambda : self.Run(text user))
 button.pack()
 window run.mainloop()
  return
```

Dificulties (Find the star)

- Histogram (brightest pixels)
- Near the center
- Iterative gravity center
- Human eye (Draw a rectangle)
 - \rightarrow Can change color, scale, (min,max)
 - \rightarrow Can substract the image of the noise

Dificulties

<u>Science</u>

Noise

→ Median Filter (when necessary)

- Error estimation
 - → (Strehl is in %)
- Moffat
 - \rightarrow 2 degree of freedom
 - \rightarrow 99% energy

<u>Computer</u>

Compatibility

→ from matplotlib.backends.backend_tkag g import FigureCanvasTkAgg as FigureCanvas

Data cube

- \rightarrow automaticaly take the last
- Going fast with array
 - $\rightarrow \text{ od}[d<0.25] = \operatorname{array}[d<0.25]$

Dificulties

<u>Science</u>

- Binary
 - → (background, photometry)
- Cut in log scale

Computer

- Wich click do I want
 - \rightarrow Color of the buttons
- Destroy, clear

- Aperture Fourier transform
 - \rightarrow (Analitycal value but for Keck ?)

- Passing Variable
 - → (class, dictionary)

Conclusion

- The error in strehl mesure (4%)
 - $\rightarrow\,$ we can do an automatic method
 - \rightarrow phot, noise
 - \rightarrow read header
 - → select star (ESO Eclipse)
- For low Strehl, better to speak about encircled energy, FWHM
- Return checks for the human.

 \rightarrow psf fit, global variables ...

Questions?

